Boosting efficiency and productivity through automation

IAPH, Sydney 2014

Dr. Tero Kokko, Vice President, Horizontal Transportation 11.4.2014

Trends in Market

Ships becoming bigger and time spent in ports should be shorter

- Safety even more focus
- Reduction of costs

Ports and terminals interest towards automation
Optimum efficiency & space utilization
Lack of trained & qualified personnel in some areas

Drivers of Automation

Improving safety of personnel, cargo and equipment Reducing cost of operation and variability Improving productivity Improving capital utilization Enabling future growth Delivering complete cargo management solutions Improving business processes - integrated IT systems improving visibility and information sharing

Kalmar SmartPort. Process Automation.

6.480

-80%

100%

10 days More Moves Gained

Automated Stacking Crane Modularity ensuring robustness and performance

Auto -Straddle Optimum flexibility in transportation and stacking

Automated Lashing Platform and efficiency

Auto -Shuttle Decoupling quay and yard crane work cycles

Kalmar SmartPort Equipment Automation.

Process automation

Process automation

- Process automation: Any process being automated through the use of <u>computers</u> and <u>software</u>.
- Automated processes require less human intervention and less human time to deliver
- Simply put: Applying technology to improve container handling processes
- Improves equipment efficiency
- **Creates** safer working environment

Information drives Efficiency

With manual processes, it can take several seconds for a job to be started

- An example: exchange between crane and truck during discharge
 - A 3 second delay
 - At a 500,000 TEU terminal
 - With ~300,000 moves
 - Results in 10.4 days of delay
- SmartPort process automation solutions can eliminate delays across all aspects of terminal operations

And add predictability with operations not dependent on handling of a person

What you see.

What you get.

SMARTPORT

46 Hours Saved SmartFleet

-80% 100 Effort Visi SmartLanes Sma

100% Visibility SmartMap

6,480 More Moves SmartRail

10 days

Gained

SmartQuay

0.00 Containers Lost SmartStack

Smart-fig

Applications around the globe

Kalmar SmartPort. Equipment Automation

Auto -Straddle

Optimum flexibility in transportation and stacking

Automated Lashing Platform Improving safety and efficiency

同原の

東京の

Auto -Shuttle Decoupling quay and yard crane work cycles

Automated Stacking Crane

Modularity ensuring robustness and performance

Terminal Logistic System

- Scalability with terminal development steps
- Integrates all systems that serve ASC cranes and blocks in the terminal
- Job dispatching, routing and fleet management
- Common look and feel with all Kalmar automation products (GUI)
- Remote Monitoring and diagnostics tools
- Interfaces to other systems (TOS, Access management, etc.)

AutoStrad - ease of automation

AutoStrad: the ease of automation

Brownfield conversion

AutoStrad: operational considerations

IN LINE

COSCI

Straddle carriers are efficient when:
Flexibility is important
The terminal area is complicated
High stack densities are not required

Small difference in productivity between 3- and 4-high containers high stacking straddle carriers

AutoStrad: capacity considerations

- Maximum stacking height is 3-4 high
 - Average stacking height can be little higher in export container stacks
 - Average stacking height of import stacks is kept lower than that of export
 - Stacking density 500...750 TEU/ha
- AutoStrad employs random stacking
 - Exports are pre-positioned automatically to the quayline as the ship arrives
 - Imports stack heights and locations can be configured depending on the reliability/availability of truck arrivals

Strad state of the art

- Fully automated self-loading straddle carrier
- Flexible for future growth
- High level of safety and security
- Efficient use of CAPEX
- Very competitive cost of production
 - Ready for deployment for new and brownfield projects

ASC and AutoShuttle

Increasing stacking density

ASC + AutoShuttle

High throughput ASC allow for high stacking density AutoShuttles decouple machine work cycles to ensure optimum efficiency

Low labour usage

Constantly high, predictable and reliable performance 24/7

Secured operational environment Environmentally friendliness Reduces overall operating costs Long lifetime 25 years / 4,000,000 operation cycles

Hyle Superi E

Hybrid AutoShuttl

Superior Performance

- Highest power & speed
- Lowest fuel consumption in the market
- Lowest cost of operation
- New steering geometry

Sustainability and environment

- Fuel savings up to 40%
- Automatic start & stop function
- Regeneration Electric braking & hoisting
- Less pollution, noise, oil
- Longer lifetime of equipment

Maintenance

- Extended maintenance intervals
- Energy storage and generator maintenance free

Shuttle vs. AGV Operation

Decoupling of vessel and yard operations

- Lower number of equipment reducing traffic congestion
- Higher vessel productivity possible than with AGV solution
- No waiting area required behind the ship-to-shore
 cranes resulting into better space utilization
- Higher buffer capacity in the ASC stacks due to 4 TEU long (or more) buffer
- No second trolley ship-to-shore cranes required, because of the buffer on the ground

Performance: Apron layout

Apron width reduced by 30 m.

- Increased capacity ~5% additional stack capacity
- Reclaimed land savings

Location	Savings
Avarage reclaimed land	6 M€
Tokyo	32 M€
Singapore	117 M€

Based on a quay length of 850 meters and costs of land based on 2006 pricing as shown in the report by the International Association of Dredging Companies

References & On-going projects

ECT Delta - Rotterdam (HPH)
» The largest project ~120 Kalmar ASCs
» Replace order 2013: 11 ASCs 1 over 5

CTB – Hamburg (HHLA)

» Brownfield terminal, 24 ASCs

London Gateway (DP World)

- New Megaterminal with 40 ASCs
- Integrated solution with Kalmar Shuttles and Navis Sparcs N4 TOS

TraPac - Los Angeles (TraPac)

Brownfield terminal, 10 ASCs in phase 1 Integrated unmanned solution with Kalmar ASCs and AHTS

Fisherman Island - Brisbane (DPW Australia)

Brownfield terminal, 14 ASCs in phase 1 Integrated solution with Kalmar Shuttles and Navis Sparcs N4 TOS

Patrick, Brisbane

First automatic straddle carrier terminal in the world (2005)

Patrick Port Botany, Sydney

Biggest Automatic Straddle Carrier Terminal

Making Your Every Move Count.